

LIQIUD FUELS

➢fossil (crude oil and derived fuels, oil shale, tar shale),

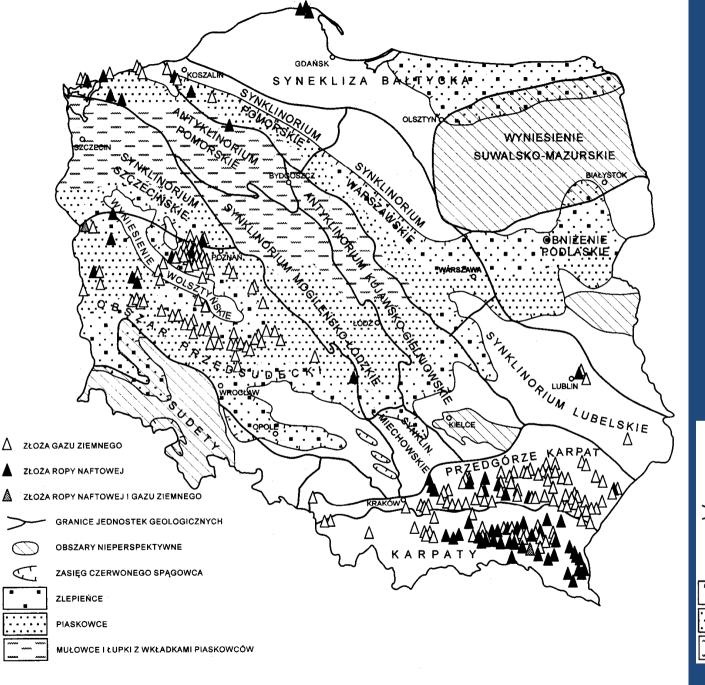
➤synthetic (alcohols, product of coal liquefaction, vegetable oils).

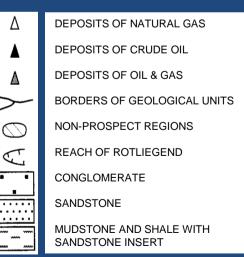
OTHER RAW MATERIALS FOR LUQUID FUELS PROCESSING

≻oil shale

≻tar shale

≻oil sand





CRUDE OIL AND DERIVED FUELS

ORIGINS OF CRUDE OIL

We the the set of the set of the

- •Crude oil is the only natural liquid fuel.
- •The origins of oil are organic, probably.
- •More than half of oil belongs to the Tertiary formation (1-60 mln year b.n.e.)

The beginnings of crude oil exploitation are connected with Łukasiewicz (1853), who invented the oil lamp.

COMBUSTION AND FUELS

Oil is the mixture of more than 3000 of hydrocarbons (C_mH_n)

COMPOSITION OF CRUDE OIL

fractional (contents of fractions different with respect to boiling temperature),
chemical (contents hydrocarbon groups),
elementary (contents of particular elements).

FRACTIONS OF CRUDE OIL

Fractions of oil from distillation:

- light petrol: 313-433 K,
- ➢ heavy petrol: 433-473 K,
- ➢ kerosene: 473-590 K,
- Diesel oil: 590-633 K,
- light residual oil: 633-813 K,
- heavy residual oil: above 813 K.

TYPES OF HYDROCARBONS

We the second the the second

- Paraffins: saturated hydrocarbons (C_nH_{2n+2}) present in all fractions of oil (methane CH₄, ethane C₂H₆, propane, C₃H₈).
- Naphthenes are cyclic saturated hydrocarbons (C_nH_{2n}) present in heavy crude oils (cyclopropane C_3H_6 , cyclopentane C_5H_{10}).
- Aromatics are ring compounds containing one or more sixmembered rings (C_6H_6 - benzene).
- Olefins unsaturated hydrocarbons (C_nH_{2n}) they do not exist normally in crude oil, but are produced during oil processing in refinery ethylene C_2H_4 , propylene C_3H_6).
- Heterogenic compounds of:
 - sulfur (hydrogen sulfide, mercaptans, tiophenes),
 - nitrogen (piridine, amines)
 - oxygen (acids, esters, phenoles)
 - alcohols, ketones.

A. S. M. M. S. M. M. S. M. M. S. M.

BASIC ELEMENTS IN CRUDE OIL

- Pure hydrocarbons are compounds of two elements only, carbon C and hydrogen H.
- In crude oil there are other three basic elements.

Element	Content, % wt.	Element	Content, % wt.
Carbon Hydrogen Sulfur	83–87 12–14 0.01–8	Nitrogen Oxygen	0.01–1.2 0.05–4

Other elements present in crude oil, like: vanadium, iron, manganese, cobalt, phosphor and microelements are in concentration of order of 10⁻³-10⁻⁵%.

🔉 🏂 COMBUSTION AND FUELS 🛛 🔉 🏂

CLASSIFICATION OF CRUDE OIL

The way we the way

There is no single method of oil classification

The primary simple systems of oil classification used the easily to measure parameters:

≻density,

≻sulfur content,

 \succ content of resins and asphalts groups,

>content of paraffines

CLASSIFICATION OF CRUDE OIL REGARDING SULFUR CONTENT

K. M. M. M. M. M. M. M.

a) low-sulfur oil: S < 0.5%
b) sulfur oil: S = 0.5-2%
c) high-sulfur oil: S > 2%

CLASSIFICATION OF CRUDE OIL REGARDING DENSITY

A A A A A A A A A A A

a) light oil: $\rho < 0.87 \text{ kg/m}^3$ b) medium oil: $\rho = 0.87 \cdot 0.91 \text{ kg/m}^3$ c) heavy oil: $\rho > 0.91 \text{ kg/m}^3$

CLASSIFICATION OF CRUDE OIL REGARDING PARAFFINES

a)low-paraffin oil: paraffin< 5% b)paraffine oil: paraffin 5-10% c)high-paraffin oil: paraffin >10%

Type of oil	Composition SACHANEN		
Paraffine	Paraffins > 75% CLASSIFICATI		
Naphthene	Naphthene > 70% OF CRUDE OIL		
Aromatic	Aromatics > 50%		
Asphalt	Resins and asphaltes > 60%		
Paraffine -naphthene	Paraffines = 60-70%, naphthenes > 20%		
Paraffine- naphthene-aromatic	Paraffins, naphthenes and aromatics approx. equal content		
Naphthene- Aromatic	Naphthenes or aromatics > 35%		
Naphthene- aromatic-asphalt	Naphthenes, aromatics or asphalts > 25%		
Aromatic-asphalt	Aromatics or resins > 35%		

PETROLEUM PRODUCTS

- LPG (liquid petroleum gas),
- engine fuels (petrol, Diesel oil),
- gas turbine fuels (wide-cut gasoline, kerosene, Diesel oil)
- \succ heavy oils,

solid petroleum hydrocarbons (paraffin, ceresine, vaseline),

- road and industrial asphalts,
- raw materials (hydrocarbons) for chemical synthesis.

PETROLEUM PROCESSING

Distillation

Catalytic cracking

Catalytic reforming

Hydrogenation

Pyrolysis

Hydroreforming

COMBUSTION AND FUELS

PETROLEUM DERIVED FUELS

Name		LCV kJ/kg	Application
	Aircraft gasoline	42 900–46 500	Aircraft piston engines with spark inition
Gasoli ne	Car gasoline	42 900–46 500	Car piston engines with spark inition
	Tractor gasoline	43 500–45 250	Tractor piston engines with spark ignition
Kerose ne	Aircraft kerosene	42 400–45 700	Aircraft gas turbines
Oil	Diesel oil	41 800–42 750	Diesel engines, gas turbines
	Heating oil	39 400–39 800	Boilers, burners

HEATING FUEL- OILS

Heavy oils are residue products of crude oil distillation, their mixture with crude oil or oil fractions of distillation.

According to Polish Standard PN-C-96024:2001 there are two types of heating fuel-oils:

- light oils (L1, L2),
- heavy oils (C1, C2, C3).

LIGHT OILS: L-1, L2

Parameter	Requrements	
	L-1	L-2
Density at °C, max, kg/m ³	860	890
Temperature of ignition, min, °C	56	
Viscosity (kin.) at 20 °C, max, cSt	6.0	8.0
Temperature of flow, max., °C	- 20	
Content of sulfur, max. (m/m) %	0.20 0.3	
Content of water, max., mg/kg	200 500	
Content of wastes, max., mg/kg	24	
Ash, max., (m/m) %	0.01	
Color	-	red
LCV, min., MJ/kg	42.6 41.5	

HEAVY OILS: C-1, C-2, C-3

	Value		
Parameter	C-1	C-2	C-3
Viscosity (kinematic) at 50 °C max., cSt (mm ² /s) at 100 °C max., cSt (mm ² /s)	90	180	_ 55
Ash, max, %	0.1	0.15	0.20
Sulfur, max, %	0.5÷2.0	0.5÷2.5	0.5÷3.0
Water, max, (V/V) %	1,0	1,0	1,0
Vanadium, max, mg/kg	100	150	
Temperature of ignition, min, °C	62		
LCV, min, MJ/kg	41.3	39.9	39.7

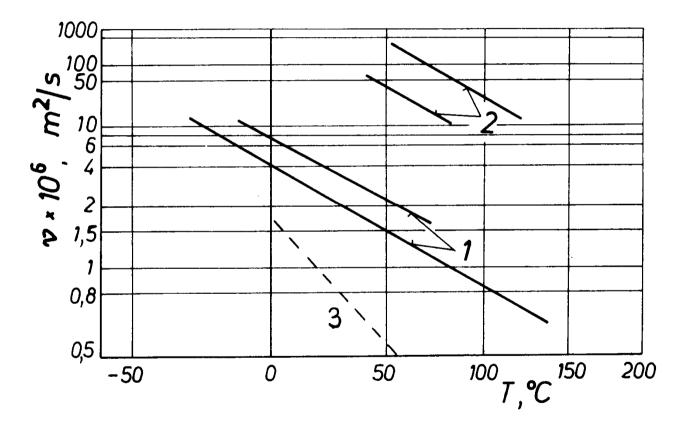
HEAVY OIL C-3

Heavy oil C-3 is the residue after the distillation process of crude oil.

There are two types of heavy oil C-3

- Mazut: residue after atmospheric distillation of crude oil.
- Gudron: residue after vacuum distillation of crude oil.

The heavy heating oil (C-3) has high viscosity, which cause that for transportation and atomisation; it requires **heating** up to the temperature of **65-90** $^{\circ}$ C.


DISADVANTAGES OF MAZUT

- 1. High viscosity: which requires heating of mazut to the temperature of 65-90 °C for transportation.
- 2. High density: storage of mazut requires heating it up to 55 $^{\circ}\text{C}$
- 3. High content of sulfur: high emission of SO_2
- 4. High content of solid pollutants: requires the use of filters.

VISCOSITY OF HEAVY OIL no. 3

Viscosity of : 1 - Diesel oil, 2 - heavy oil, 3 - water versus temperature

A COMBUSTION AND FUELS

VISCOSITY UNITS

Basic:

m²/s

Auxiliary units:

$cSt = mm^2/s$

 $1 \text{ cSt} = 10^{-6} \text{ m}^2/\text{s}$

EXAMPLE OF MAZOUT PARAMETERS AS A FUEL FOR POWER PLANT

the the second the second the second the second

-	LCV:	39380 kJ/kg,
-	temperature of ignition:	438 K (165 °C),
-	freezing point:	303 K (30 °C),
-	viscosity at temperature of 353 K: (30 $^\circ$ C):110 cSt,
-	max. temperature of heating:	363-398 K (90-125 °C),
-	sulfur content <	3%,
-	ash content <	0.3%,
-	water content <	1.5%,
-	solid bodies content <	0.5%. OP 650

LIGHT HEATING OIL (EL)			
Requirements (Parameters)	Values		
LHV, ≥	42.0 MJ/kg		
Density at temperature of 15 °C, \leq	0.860 kg/l		
Temperature of ignition, \geq	55 °C		
Kinetic viscosity at temperature of 20 °C, \leq	6.0 cSt		
Freezing point, ≤	−6 °C		
Water, % wt., ≤	0.05		
Ash, % wt., ≤	0.01		
Sulfur, % wt., ≤	0.20		
Char (Conradson), % wt., ≤	0.1		
Other compounds, % wt., \leq	0.05		

DERIVED FUELS

TAR DERIVED OILS

We the the second the second the second

Heating oils are produced with:

≻raw coke tar,

≻gas tar, generator tar

>pyrolysis tar.

Coke tar is produced in the process of coal coking in coke batteries at the temperature of 1000 °C. Tar removed from coke gas during its cleaning.

Heating oil is obtained from the fraction of distillation of tar. Its components mostly are aromatic hydrocarbons.

A. S. M. M. S. M. M. S. M. M. S. M.

PROPERTIES OF TAR DERIVED OILS

Poquiromonto	Sort		
Requirements	I	Ι	
Density, kg/m ³	0.96–1.09	0.96–1.12	
Water (%), ≤	1	1	
Ash (%), ≤	0.05	0.5	
Temperature of ignition (Markusson) ($^{\circ}$ C), \geq	70	65	
LCV, (kJ/kg), ≥	35 600 (ca. 8500 kcal/kg)	33 500 (ca. 8000 kcal/kg)	

ALCOHOLS

» methyl alcohol» ethyl alcohol

APPLICATIONS OF ALCOHOLS

Methyl and ethyl alcohols can be used as <u>motor fuels</u> replacing hydrocarbon liquid fuels in:

- spark ignition piston engines (2 and 4 stroke)
- Diesel engines (methanol)

Methods of alcohols manufacturing:

Methanol: is produced by Fisher-Tropsch chemical synthesis from synthetic gas received from natural gas and from gases obtained via gasification of coal, wood and wastes.

Ethanol: is produced from biomass by its alcohol fermentation and distillation.

SOME PROPERTIES OF ALCOHOLS AS A FUEL

A. S. M. M. S. M. M. S. M. M. S. M. M.

Parameter	Methanol	Ethanol
Chemical formula	CH ₃ OH	C ₂ H ₅ OH
LCV, kJ/kg	19 000	27 000
Air, kg/kg	6.45	9.01
Viscosity at temp. of 293 K, cSt	0.75	1.51
ON (octane number)	96	94

VEGETABLE OILS

TYPES OF VEGETABLE OILS

➢ Rapeseed

➤Sunflower

≻Palm

≻Soya

Esters fat acids

COMBUSTION AND FUELS

COMPARISON OF RAPESEED OIL AND METHYL ESTER PROPERTIES

Droportion	Type of oil			
Properties	ONM	Rapeseed oil	ROKMET	
Density at temp. of 20 °C, g/cm ³	0.817	0.914	0.882	
Viscosity at temp. of 40 °C, mm ² /s	1.83	34.56	4.61	
Cetane number (LC)	51.7	49	52	
Temperature of ignition, °C	67	200	130	
LCV, MJ/kg	≈ 42	37.7	36.7	

SOMBUSTION AND FUELS

BASIC PARAMETERS OF LIQUID FUELS

- 1. Composition
- 2. HCV (Q_s) and LCV (Q_i) (MJ/kg)
- 3. Density ρ (kg/m³)
- 4. Viscosity $v (m^2/s)$
- 5. Temperature of ignition (K)
- 6. Freezing point (K)
- 7. Heat of vaporization (J/kg)
- 8. Ash
- 9. Sulfur
- 10. Octane number (ON)
- 11. Cetane number (CN)

CETANE NUMBER (CN)

<u>Cetane number CN</u> is the measure of ability of Diesel fuel to selfignition.

CN of a particular fuel blend is determined under specific operating conditions in a CFR single cylinder engine at variable CR.

CFR - Co-operative Fuel Research CR - Compression Ratio

The reference fuel: mixture of n-cetane, $C_{16}H_{34}$, and α -methyl-naphtalene

n-cetane hasCN = 100 α -methyl-naphtalene hasCN = 0

CN = content of cetane in %. (40-50)

COMBUSTION AND FUELS

CALORIC VALUES OF SELECTED LIQUID FUELS

A. S. M. M. S. M. M. S. M. M. S.

Type of	Name	LCV	HCV
fuel		MJ/kg	MJ/kg
Liquid	Ethanol	26.8	29.7
	Petrol	42.0	45.2
	Diesel oil	41.8	44.7
	Heating oil	42.1	44.8

WORLD RESERVES OF CRUDE OIL

Total reserves:370 bln Mg.Recoverable reserves:137 bln MgTime of consumption:44 years

RESERVES, PRODUCTION AND IMPORT OF CRUDE OIL IN POLAND

S. Mr. We Mr. Mr. W

Total reserves:

Production:

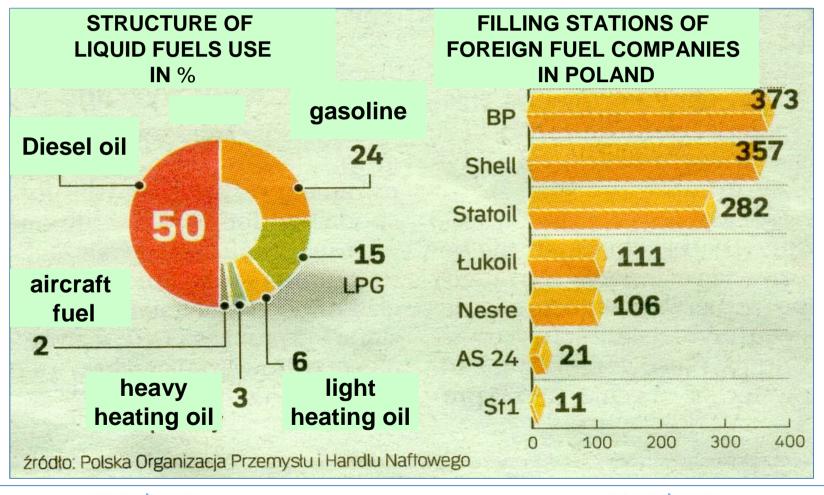
Import of petroleum:

Import of petrol:

Import of Diesel oil:

12 mln Mg

0.728 mln Mg/year


18 mln Mg

0.627 mln Mg

0.968 mln Mg

Structure of liquid fuels use in Poland

S S COMBUSTION AND FUELS AND SUBLE