

ATOMIZATION OF LIQUID FUELS

THE PRINCIPLE OF LIQUIDS ATOMIZATION

K. M. W. M. M. M.

Atomization is the process whereby bulk liquid is transformed into a collection of drops.

This transformation goes through the break-up of liquid jet into a number of filaments, which in turn transform into droplets.

MECHANISMS OF LIQUIDS ATOMIZATION

LAR, Mr. Wei Wei, Mr. We

Three mechanisms:

Disintegration of a liquid jet into a number of filaments, and then into small droplets, requires the surface tension forces of liquid to be overcome. It may happen on the three ways:

- by <u>surface tension</u> between moving liquid jet and steady air which destabilise the jet and causes its disintegration into filaments,

- by <u>centrifugal forces</u> of swirled liquid jet,

- <u>outer mechanical and electrostatic</u> forces and by supersonic acoustic.

FLUID ATOMIZATION WITH DIFFERENT ENERGY

JETS DISINTEGRATION AND DROPLETS BREAKUP

Primary liquid jet disintegration

Droplets break-up

RANGE OF LIQUID ATOMIZATION

Re = (UL)/vWe = $(U^2L)/\sigma$

 $\boldsymbol{\sigma}$ - the surface tension coefficient

🔉 🏂 🖕 COMBUSTION AND FUELS 🛛 🔉 🛸

INFLUENCE OF PRESSURE-INJECTION ON ATOMIZATION EFFECTIVENESS

TORCH OF PLAIN-ORIFICE ATOMIZED OIL

Swirled jet

TYPES OF OIL INJECTORS/ATOMIZERS

AL JAC The West JAC The

PRESSURE INJECTORS

PLAIN-ORIFICE ATOMIZER

 $D_o > 0.5 mm$ $\Delta p = 0.3-1(5) MPa$ $\alpha = 5-15^o$

Simple construction, Low quality of atomization

SWIRL ATOMIZERS

HOW A SWIRL NOZZLE WORKS

SWIRL NOZZLE: DESIGN

- d_o = 2-6 mm
- $\Delta p = 0.6-1.0 \text{ MPa}$
- α = 45-90°

Simple construction High reliability High quality of atomization

Low energy consumption

🔥 🎉 COMBUSTION AND FUELS 🏾 🔈 🏂

SWIRL NOZZLE: AN EXAMPLE

A. S. M. M. S. M. M. S. M. M. M. M.

COMPACT SWIRL ATOMIZER

TYPE OF FUEL CONES

Delavan

SWIRL ATOMIZER IN OPERATION

Dispersed oil jet

PNEUMATIC ATOMIZERS

PNEUMATIC ATOMIZER: PRINCIPLE OF OPERATION

Consumption of atomizing medium: δ =0.06-0,1 kg/kg

PNEUMATIC ATOMIZER OF Y TYPE

Pneumatic atomizer of Y type: 1 - oil, 2 - gas, 3 - atomizing head, 4 - nozzles

PNEUMATIC ATOMIZER OF CROSS-SHAPE FLOW TYPE

Pneumatic atomizer of the cross-shape flow type: 1 - oil, 2 - gas, 3 - oil injection, 4 - gas injection, 5 - mixing chamber, 6 - nozzles

🔉 🏂 COMBUSTION AND FUELS 🛛 🔉 🏂

ROTATING ATOMIZERS

How does rotating atomizer operate?

OIL BURNER WITH ROTATING ATOMIZER

- 2 Self-closing valve
- 3 Electromagetic valves for ignition gas 1)
- 5 Ignition transformer
- 6 Flame scanner 2)
- 7 Outer register ring
- 8 Self-closing valve
- 9 Igniter
- 10 Differential pressure monitor for primary air
- 11 Rotary cup atomizer
- 12 Primary air damper
- 13 Electromagnetic valves for fuel oil
- 14 Air elbow unit
- 15 Fan unit for combustion air
- 16 Pressure monitor for combustion air
- 17 Air metering unit
- 18 Control disk unit with 2 cam strips
- 19 Rotary valve
- 20 Servodrive
- 21 Pressure measuring device w/shut-off valve
- a) Fuel oil inlet
- b) Combustion air inlet
- c) Combustion air annulus
- d) Ignition gas in let
- 1) Automatic quick-closing safety shut-off fittings
- 2) does not belong to the burner

CONTROL OF OIL FLOW RATE

ATOMIZATION PRESSURE VARIATION

A A A A A A A A A A A A

- 1. The simplest way for oil output/consumption control is variation of pressure of atomization.
- 2. Disadvantage of this method of output control is loss of atomization quality due to reduction of atomization pressure.

Rate of oil output ~ $(\Delta p)^{0.5}$

Two-step control of oil flow rate

- Scheme of single chamber two-step oil atomizer:
- 1 valve, 2, 3 recalculating pipes

CIRCLE MECHANICAL (RETURN- FLOW) ATOMIZER

RETURN OIL INNER CIRCLE ATOMIZER

CIRCLE OIL ADJUSTING VALVE

1 - VALVE, 2 - SWIRL CHAMBER,3 - OIL CIRCLE HOLES

TWO-NOZZLES ATOMIZER

- I nozzle
- II nozzle

QUALITY OF ATOMIZATION

PARAMETERS OF ATOMIZATION

I AR The Mar Mar Mar Mar Mar

- output, kg/s
- angle of dispersion, deg
- droplets distribution,
- mean diameter of dispersion, m.

CHARACTERISTICS OF ATOMIZING NOZZLE

Output *m* of pressure atomizers is defined as follows:

 $m = \mu A (2\rho_c \Delta p)^{0.5}$

where: A is the area of the nozzle output, p is pressure and μ is the outflow coefficient.

DROP SIZE DISTRIBUTION

CHARACTERISTIC OF DROPLETS SIZE

Mean drop size:

mean drop size MDS = $[(\Sigma n D^3 / \Sigma n D)]^{0,5}$,

Sauter mean drop size $SMDS = \sum nD^3/\sum nD^2$.