STOICHIOMETRY OF COMBUSTION

FUNDAMENTALS: moles and kilomoles

Atomic unit mass:

 $1/12_{12}^{6}$ C ~ 1.66 10⁻²⁷ kg

Atoms and molecules mass is defined in atomic unit mass: which is defined in relation to the 1/12 of carbon ₁₂ ⁶C.

Mole: (Avogadro number)

6.022•10²³ atoms

Volume of 1 mole (perfect gas) 22.4141 (T=0 °C, p=1 atm)

Kmole:

 10^3 moles

Mass of one mole (kmole) is a number of grams (kilograms) equal to the relative atomic mass.

CHEMICAL REACTIONS

Consider a simple chemical reaction of two species A and B giving a single product C

$$A + 2B \rightarrow C$$

 $1 \text{ mol} + 2 \text{ moles} \rightarrow 1 \text{ mol}$

A, B and C are reactants. A and B are substracts. C is a product of reaction.

Stoichiometry of chemical reactions means that species react in exact proportions.

SPECIE'S CONCENTRATIONS AND FRACTIONS

Concentration of *i* specie:

- (moles of *i* specie) /volume
- •(mass of *i* specie)/volume

Mole fraction:

• (moles of i specie)/(total number of moles of species)

Mass fraction:

• (mass of *i* fraction)/(total mass)

STOICHIOMETRY OF HYDROCARBONS OXIDATION

Fossil fuels are mainly compounds of carbon and hydrogen (hydrocarbons - C_mH_n). The reaction of its oxidation can by written by the equation of stoichiometry:

$$C_mH_n + (m + n/4)O_2 \rightarrow mCO_2 + n/2H_2O$$

1 mol +
$$(m + n/4)$$
moles $\rightarrow (m + n/2)$ moles

This is an equation of stoichiometry of combustion.

It is important that for one mole of fuel C_mH_n there is necessary exactly:

(m + n/4) moles of oxygen for complete combustion.

TYPES OF OXIDIZERS

In combustion processes the oxidizer could be:

- **1. Oxygen (O₂)**
- 2. Air $(21\%O_2 + 79\%N_2)$
- 3. Air enriched with oxygen $(O_2 > 21\%)$
- 4. Some compounds containing oxygen, like nitrogen oxides: N₂O

COMPOSITION OF FUEL MIXTURE

When fuel and oxidizer composition in the mixture (fuel and oxidizer) results from the equation of stoichiometry we say that the mixture is **stoichiometric**.

If combustion of a stoichiometric mixture is complete in flue gas cannot be nor fuel neither oxygen.

TYPES OF COMBUSTIBLE MIXTURES

FUEL MIXTURE			
Rich	Stoichiometric	Lean	
Excess of fuel	Stoichiometric content of fuel and oxygen	Excess of oxidizer	

BURNING OF STOICHIOMETRIC METHANE MIXTURE IN AIR

Air: 79% $N_2 + 21\% O_2$

$$CH_4 + 2O_2 + 7.52N_2 \rightarrow CO_2 + 2H_2O + 7.52N_2$$

Attention: there is not fuel neither oxygen in flue gas.

BURNING OF STOICHIOMETRIC METHANE MIXTURE IN AIR:

flue gas composition

A number of moles of flue gas *N*:

$$N = 1$$
 mole $CO_2 + 2$ moles $H_2O + 7.52$ mole $N_2 = 10.52$ moles

According to the *wet* (water is steam/liquid) analysis of flue gas the concentration of the components is as follows:

$$[CO_2] = 1 \text{mole } CO_2/10.52 = 9.5\% CO_2 \text{ vol.}$$

$$[H_2O] = 2 \text{ moles } H_2O/10.52 = 19\% H_2O \text{ vol.}$$

$$[N_2] = 7.52 \text{ mole } N_2/10.52 = 71.5\% N_2 \text{ vol.}$$

BURNING OF LEAN METHANE MIXTURE IN AIR

Assumption: AIR EXCESS = 5%

$$CH_4 + 2.1O_2 + 7.9N_2 \rightarrow CO_2 + 2H_2O + 7.9N_2 + 0.1O_2$$

Attention: there is oxygen in flue gas.

BURNING OF LEAN METHANE MIXTURE IN AIR: flue gas composition

A number of moles of flue gas N equals:

$$N = 1$$
 mole $CO_2 + 2$ moles $H_2O + 7.9$ mole $N_2 + 0.1$ mole $O_2 = 11$ moles

According to the *wet* (water is liquid) analysis of flue gas the concentration of the components is as follows:

$$[CO_2] = 1 \text{mole } CO_2/11 = 9.09\% CO_2 \text{ vol.}$$

$$[H_2O] = 2 \text{ moles } H_2O/11 = 18.2\% H_2O \text{ vol.}$$

$$[O_2] = 0.1 \text{ mole } O_2/11 = 0.91\% O_2 \text{ vol.}$$

$$[N_2] = 7.52 \text{ moles } N_2/10,52 = 71.82\% N_2 \text{ vol.}$$

STOICHIOMETRIC AIR

The theoretical air required to complete combustion of fuel results from the equation of stoichiometry of oxygen/fuel reaction. Stoichiometric air means the minimum air in stoichiometric mixture. The stoichiometric air/fuel ratio (AFR) can be calculated from the reaction equation (g/g). For gas AFR is usually determined in m³/m³.

The actual combustion air depends also on the assumed air excess (equivalence ratio or stoichiometric ratio).

THE STOICHIOMETRIC RATIO (λ) (WSPÓŁCZYNNIK NADMIARU POWIETRZA)

$$\lambda = \frac{\text{Actual air}}{\text{Stoichiometric air}}$$

$$\lambda \cong \frac{20.9}{20.9 - [0_2]}$$

AN EQUIVALENCE RATIO φ (WSPÓŁCZYNNIK EKWIWALENCJI)

In English more often than stoichiometric ratio λ the equivalence ratio ϕ is in use.

$$\phi = \frac{F/A}{(F/A)_s}$$

$$\phi = \frac{1}{\lambda}$$

F – number of moles of fuel,

A – number of moles of air.

s - stoichiometric

AIR/FUEL RATIO (AFR) and FUEL/AIR RATIO (FAR)

Form the practical reasons in aviation (aircrafts) mostly in use is the ratio of air mass-flow to the fuel mass-flow determined as AFR (Air/Fuel Ratio)

AFR = F/A

A - air mass-flow (A - air), kg/s

F – fuel mass-flow (F – fuel), kg/s

In similar way FAR (Fuel/Air Ratio) is defined.

STOICHIOMETRIC RATIO/EQUIVALENCE RATIO AND TYPE OF MIXTURE

Type of flame/type of mixture			
Stoichiometric	Lean		
	(weak)		
$\lambda = 1$	$\lambda > 1$		
$\phi = 1$	φ < 1		
	Stoichiometric $\lambda = 1$		

AIR EXCESS (n)

The relationship between the stoichiometric ratio λ and air excess n

$$n = (\lambda - 1) * 100\%$$

STOICHIOMETRIC AIR/FUEL RATIO FOR SELECTED GASES

Gaz	Stoichiometric air/fuel ratio AFR, m ³ /m ³	
СО	2.87	
H_2	2.82	
CH ₄	10.42	
C_2H_2	12.43	
C_2H_6	18.14	
C_3H_8	26.11	
Natural gas	8.43	(approx. 82% CH ₄)

EXAMPLE

Stoichiometric air for methane burning (CH₄) is 10.42 m³ /m³

Assuming:

The rate feeding of methane $V = 10 \text{ m}^3/\text{h}$

The rate feeding of air $V = 114.62 \text{ m}^3/\text{h}$

We have:

 $\lambda = 114.62/104.2 = 1.1$

n = (1.1 - 1.0) * 100% = 10%