

COMBUSTION OF GASEOUS FUELS

COMBUSTIBLE MIXTURE

Definition:

a <u>mixture</u> of fuel and oxidizer is combustible when combustion is developing in it after an ignition source vanishes.

TYPES OF COMBUSTIBLE MIXTURES

FLAMMABILITY LIMITS

FLAMMABILITY LIMITS: DEFINITION

S. M. S. S. M. M. S. M. M.

Flame can occur only in mixture within a certain composition range: flammability limits.

Flammability limits refer to the composition range within which ignition and flame propagation can be brought by external ignition (e.g. by spark).

LEAN AND RICH FLAMMABILITY LIMITS

A DE SEL AL DE SEL AL DE SE

LFL - minimum percentage of fuel by volume in the mixture

RFL - maximum percentage of fuel by volume in the mixture

(for solid fuels could be expressed in g/m^3)

Explosion limits mean the same as flammability limits:

LEL - lower explosion limit means the same as lean flammability limit.

UEL - upper explosion limit means the same as rich flammability limit.

FLAMMABILITY LIMITS - examples

A. S. D. A. S. D. A. S. D. D. D. S.

	Flammability limits			
Gas	% in air		% in oxygen	
	LEL	UEL	LEL	UEL
Hydrogen CO Methane Ethane Propane Butane Acethylene Benzene Methanol Ethanol	4.1 12.5 5.3 3.2 2.4 1.9 2.5 1.41 6.72 3.28	$74.2 \\74.2 \\14.0 \\12.5 \\9.5 \\8.4 \\80.0 \\6.75 \\36.5 \\18.95$	4.0 15.5 5.1 3.0 2.3 1.8 2.5 2.6 -	94.0 94.0 61.0 66.0 55.0 48.0 89.4 30.0 -

Definition

Ignition means local initiation of the combustion process in a combustible mixture.

Two ignition types can be distinguished:

- external ignition (e.g. spark ...),
- selfignition.

MINIMUM ENERGY of IGNITION

The second the the second

Definition

 E_{\min} - is minimum of energy, which discharged in a combustible mixture causes it's ignition.

 E_{\min} - is measured in J.

Standard E_{min} of different fuels:

- gaseous: < 1 mJ
- liquid: 10-100 mJ
- dusts: 0.1-1.0 J

MINIMUM IGNITION ENERGY OF GASES

The minimum energy of ignition depends on: a) type of gas b) concentration of gas in the mixture.

SELFIGNITION

K. M. M. M. M. M. M. M. M. M.

Definition:

Selfignition is a proces of initiation of combustion in a mixture due to excess of the temperature of the mixture.

PROPAGATION OF COMBUSTION

- 1. Deflagration
- 2. Detonation
- 3. Glow

- 1. Deflagration is propagation of a combustion process by flame.
- 2. Mechanism of propagation has thermal character: by heat conduction.

Definition:

Flame is a wave of exothermic chemical reaction propagating with characteristic velocity, called flame speed u_n .

DETONATION

Definition:

Detonation wave is a wave of combustion preceded by the shock wave.

FLAME STRUCTURE

Considering <u>character of flow</u> there are two principal types of flames :

- laminar,
- turbulent.

PREMIXED AND DIFFUSION FLAMES

Considering <u>preparation of combustible</u> mixture there are two principal types of flames:

- premixed,
- diffusion flames.

PREMIXED LAMINAR FLAME

STRUCTURE OF PREMIXED LAMINAR FLAME

We we we

STRUCTURE OF PREMIXED LAMINAR FLAME

Rys. 2.5. Struktura laminarnego czoła płomienia ubogiej mieszanki metan-tlen. Zakreskowana strefa świecenia. Ciśnienie 0,1 atmosferycznego

SPEED OF PREMIXED, LAMINAR FLAME

Methane: ~ 40cm/s

PREMIXED, LAMINAR FLAME ABOVE THE BUNSEN BURNER

PREMIXED, LAMINAR FLAME ABOVE THE BUNSEN BURNER

Determination of flame velocity from the angle of flame

🔉 🏂 COMBUSTION AND FUELS 🛛 🔉 🏂

STRUCTURE OF DIFFUSION, LAMINAR FLAME

Laminar diffusion flame: 1 - gas, 2 - flue gas, 3 - air, 4 - temperature, 5 - flame

STRUCTURE OF DIFFUSION, LAMINAR FLAME

STRUCTURE OF DIFFUSION, LAMINAR FLAME

Diffusion flame height vs. gas outflow velocity

LIFTED DIFFUSION, TURBULENT FLAME

Surface area of turbulent flame

STRUCTURE OF DIFFUSION, TURBULENT FLAME

INFLUENCE OF TURBULENCE ON FLAME STRUCTRURE

FIG. 2.9 Stoichiometric propane-air flames under conditions of low and high turbulence. Upper photograph, u' = 3.1 m/s. Lower photograph, u' = 30.5 m/s.

STABILITY OF GAS FLAMES

Stability of premixed flame in an open space

GAS BURNERS

REQUIREMETS FOR GAS BURNERS

The major requirements of a burner is to deliver air for fuel combustion and organize mixing of fuel/air to get flame of required features.

Features of good burner:

- stable and proper operation in the range of design parameters,
- low emission of pollutant,
- security of operation
- long livetime,
- low level of noise.

TYPES OF GAS BURNERS

CLASSIFICATION OF GAS BURNERS

DEPENDING ON APPLICATIONS

- •Compact burners (common use)
- •Low- emission burners
- •Start-up burners
- Pilot burners
- •Special burners

Range of power of gas burners: from kilowates to megawates

PRINCIPLE OF OPERATION OF LOW-PRESSURE JET-EJECTOR GAS BURNER

Sombustion and fuels

RANGE OF OPERATION LOW-PRESSURE JET-EJECTOR GAS BURNER

- 1- back-fire
- 2- blow-up of flame
- 3- yellow ends of flame
- 4- un-complete combustion
- 5- maximum of air ejection

Zakres pracy palnika inżektorowego: 1 - cofanie płomieni, 2 - odrywanie płomieni, 3 - żółte końce płomieni, 4 - niezupełne spalanie, 5 - maksymalne zassanie powietrza

SELECTION OF NOZZLES FOR LOW-PRESSURE JET-EJECTOR GAS BURNERS

EXAMPLES OF LOW-PRESSURE JET-EJECTOR GAS BURNERS

LOW-PRESSURE JET-EJECTOR GAS BURNERS

Domestic ovens burners

HIGH-PRESSURE JET-EJECTOR GAS BURNERS

NOZZLE-MIX JET BURNERS

Rys. 8.5. Palniki pracujące bez wstępnego mieszania ze zbieżnym prowadzeniem strumieni powietrza i gazu: a) według dokumentacji *Meyerhofer*, b) według dokumentacji *Maxon*

NOZZLE-MIX SWIRL BURNERS

COMPACT BURNER

Power flame

DUCT BURNER - IDEA

DUCT BURNERS - SOLUTIONS

1 - INTRODUCTION

The REBURNFLAM* GASDUCT burners, TEG version, have been developed (see fig.1) for postcombustion in turbine exhaust gas flow at low O₂ content (12.5 to 15% O₂, 400 to 600°C), upstream of the HRSG. They have a low pressure drop in order to maintain thermodynamical turbine efficiency. They may also operate in fresh air mode to maintain HRSG production, even though the turbine is shull-down.

Fig.2 - Partial induction (US patent 4.895.514)

sections, we consider a way

Fig.1 - REBURNFLAM* gaseluct burnet. TEG version, 0 MW

2 - DESCRIPTION

See figures 1, 2, 3.

The burner comprises a rigid steel frame (1), in which burner rows are fitted (2). Each row comprises a gas tube (3) onto which cast refractory steel shields (4) are welded (US patent n° 4.895.514). Each shield constitutes a burner with venturis (5) for partial induction of the combustive. This particular feature gives the flame a high stability. The burner is built to withstand TEG temperatures of up to 650°C.

The gas tube (3) is made of refractory steel, and the shield is made of cast refractory steel.

The burner is equipped with highly reliable flame detectors, self-checking

Fig.4a - Dampers, open position, TEG mode, output rating 25 MW

Fig.4b - Dampers, closed position,

WASTE GAS BURNER

RADIATING TUBES

GAS FLARES

John Zink

PILOT BURNERS

A. S. M. M. S. M. M. S. M. M. M. M.

GAS LAMPS

NEW COMBUTION TECHNOLOGIES: FLAMELESS COMBUSTION

- Diluted combustion
- •Highly preheated combustion

FLAMELESS COMBUSTION

flame combustion

flameless combustion

CONDITIONS OF FLAMELESS COMBUSTION

S. The West Mr. The

>temperature of air must be higher than selfignition temperature (800-1000 $^{\circ}$ C),

- >intensive recirculation in flame region should secured,
- > burning at low oxygen concentration, below 2-5 % vol.,
- \succ system of air and gas nozzles should allow to extend the combustion process on the whole furnace.

RULES OF FLAMELESS COMBUSTION

RANGE OF FLAMELESS COMBUSTION

EFECTS OF FLAMELESS COMBUSTION

The second second

 \succ increase of thermal efficiency,

 \Rightarrow saving of fuel: 15-30%,

 \bigstar increase of furnace capacity: 25%,

> uniform temperature distribution in the furnace,

>low NO_x concentration in flue gas

- $an order lower than using low-NO_x combustion systems,$
- two orders lower than using conventional burners.

NOX CONCENTRATION IN FLUE GAS DEPENDING ON THE TEMPERATURE

1- conventional burner, 2- air staging, 3- flameless combustion

APPLICATION OF FLAMELES COMBUSTION TECHNOLOGY

At present:

- ≻In glass industry (burners of 200-300kW),
- ≻In ceramic industry (burners of 200-300kW),
- ≻In metallurgy (burners of 6-8 MW),
- ≻In petrochemistry.

In the future:

- \checkmark In power plants (PF boilers),
- \checkmark In the waste incinerators.

